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Abstract. Magnetic breakdown phenomena have been investigated in the longitudinal magne-
toresistance of the quasi-two-dimensional (Q2D) superconductorκ-(BEDT-TTF)2Cu(NCS)2 in
magnetic fields of up to 50 T, well above the characteristic breakdown field. The material is of
great interest because its relatively simple Fermi surface, consisting of a closed Q2D pocket and
an open Q1D band, is almost identical to the initial hypothetical breakdown network proposed
by Pippard. Two frequencies are expected to dominate the magnetoresistance oscillations: theα

frequency, corresponding to orbits around the closed pocket, and theβ frequency, corresponding
to the simplest classical breakdown orbit. However, aβ −α frequency is in fact found to be the
dominant high-frequency oscillation in the magnetoresistance. Numerical simulations, employ-
ing standard theories for calculating the density of states, indicate that a significant presence of
the β − α frequency (forbidden in the standard theories) can result simply from the frequency-
mixing effects associated with the pinning of the chemical potential in a quasi-two-dimensional
system. While this effect is able to account for the previous experimental observation ofβ − α

frequency oscillations of small amplitude in the magnetization, it cannot explain why such a
frequency dominates the high-field magnetotransport spectrum. Instead we have extended the
numerical simulations to include a quantum interference model adapted for longitudinal mag-
netoresistance in a quasi-two-dimensional conductor. The modified simulations are then able to
account for most of the features of the experimental magnetoresistance data.

1. Introduction

Pulsed magnetic fields have proved to be a valuable experimental tool in the study of charge-
transfer salts of the molecule bis(ethylenedithio)tetrathiafulvalene (abbreviated as BEDT-
TTF or ET) [1–5]. On applying strong magnetic fields, the amplitudes of the quantum
oscillatory phenomena such as the Shubnikov–de Haas (SdH) and de Haas–van Alphen
(dHvA) effects are observed to grow rapidly, often showing departures from conventional
Lifshitz–Kosevich (LK) behaviour as the quantum limit is approached [2, 3, 5, 6]. In this
paper, magnetic fields of up to 50 T and temperatures between 350 mK and 4.2 K have been
used to study the effects of magnetic breakdown (MB) and quantum interference (QI) in
the charge-transfer saltκ-(BEDT-TTF)2Cu(NCS)2. The magnetic fields used comfortably
exceed the characteristic MB fieldB0, thus enabling the high-frequency quantum oscillatory
features due to MB and related mechanisms to be resolved with great clarity.
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Figure 1. (a) The Fermi surface ofκ-(BEDT-TTF)2Cu(NCS)2 in the b-plane comprising an
open quasi-one-dimensional sheet and a closed pocketα (taken from [12]). The action of
magnetic breakdown enables the ‘free-electron-like’β orbit. (b) A schematic representation of
the ‘forbidden’β − α ‘orbit.’

κ-(BEDT-TTF)2Cu(NCS)2 has attracted considerable interest over recent years, as it
boasts one of the highest superconducting transition temperatures(Tc = 10.4 K) of any
BEDT-TTF salt [7]. The salt has also been investigated using the dHvA effect in the
vortex state [8] and SdH oscillations under hydrostatic pressure; the latter measurements
enabled the first direct study of the relationship between the quasiparticle effective mass
and Tc in any superconductor [9]. Band-structure calculations for this material predict a
large quasi-two-dimensional (Q2D) Fermi surface pocket of holes [10]; following general
usage we shall refer to quasiparticle orbits about this complete Fermi surface as theβ orbit
(see figure 1(a)). The dimerization of the BEDT-TTF molecules introduces an additional
weak lattice potential in the reciprocal-latticekc-direction which has the effect of halving the
Brillouin zone and splitting the Fermi surface into a Q2D lens pocketα and an open quasi-
one-dimensional (Q1D) sheet (see figure 1(a)). Consequently, theα frequency dominates
SdH and dHvA spectra at low magnetic fields; at higher fields, theβ frequency plus a host
of combination frequencies appear as a result of MB [11–13].

As will be seen in section 3 of this paper, in many respects the MB phenomena observed
experimentally inκ-(BEDT-TTF)2Cu(NCS)2 agree with the standard network model [14–
16]. Indeed, the geometry of the Fermi surface is almost exactly that of the hypothetical
one-dimensional network model proposed by Pippard (see [14, 15]). However, significant
differences from the standard network model are suggested by the experimental observation
of the β − α frequency (see section 3 and [11, 12]), the existence of which requires
a sudden reversal of the path of the quasiparticle along its semiclassical trajectory [16]
(figure 1(b)). Given that this ‘forbidden’ frequency has been most commonly observed in
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magnetotransport measurements [11, 12], its origin has been ascribed to the Stark quantum
interference (QI) effect [17, 18]. It is well known [17, 18] that the Stark QI effect should
not contribute to the free energy of the system and so the resultant frequencies should not
be detected in the magnetization. However, the recent observation of weak oscillations with
theβ−α frequency in torque magnetometer measurements [13] has provoked further debate
as to its origin [19].

The manifestation of aβ − α frequency in the magnetization strongly suggests real
oscillations of this frequency in other thermodynamic functions of state such as the free
energy. In an attempt to explain the origin of theβ−α frequency, Machidaet al [19] recently
performed numerical calculations in which they modelled the energy level structure of
κ-(BEDT-TTF)2Cu(NCS)2 using an extension of the Hofstadter problem [20]. By including
an additional weak lattice potential in the Hamiltonian they were able to introduce the effect
of MB phenomena on the energy spectrum. A significantβ − α frequency was found to be
present in their simulations, and was therefore thought to be a consequence of the recursive
band-structure picture [19].

Whilst the model proposed by Machidaet al [19] may be a possible explanation for the
β − α frequency, the possibility of more than one mechanism contributing to its existence
cannot be ruled out. In contrast to the work of Machidaet al, in section 4 of this paper we
have calculated the magnetization and magnetoresistance numerically using the conventional
schemes of Pippard (see [14, 15]) and Falicov and Stachowiak [16] for evaluating the density
of states (DOS) in the presence of MB. Numerical calculations have the advantage that they
enable effects such as the oscillatory chemical potential to be included; the oscillatory
chemical potential has recently been shown to give rise to deformation of the waveform [6]
and to frequency-mixing effects in BEDT-TTF charge-transfer salts at high magnetic fields
[5]. The results of the calculations in section 4 indicate that the pinning of the chemical
potential to sharply defined Landau levels is responsible for the observation of theβ − α

frequency in magnetization measurements.
Magnetotransport data differ significantly from magnetization data in that theβ − α

frequency is much stronger and the relative spectral weights of all frequencies are different.
In section 5 of this paper we have adapted the original theories of Stark QI [17, 18] for
the purpose of modelling the longitudinal magnetoresistance ofκ-(BEDT-TTF)2Cu(NCS)2.
By making a number of assumptions and approximations, the effects of QI can be included
within the calculations of the longitudinal magnetoresistance, to give a satisfying qualitative
explanation of the experimental results in section 3.

2. Experimental details

The single crystal ofκ-(BEDT-TTF)2Cu(NCS)2 used in this experiment was a hexagonal
platelet of approximate dimensions 0.3 × 0.4 × 0.2 mm3 (the shortest dimension is
perpendicular to the conducting Q2D planes), synthesized using standard electrochemical
procedures [7, 10]. In some experiments, the sample was oriented with the magnetic field
perpendicular to the conducting (Q2D)bc-planes; however, the majority of experiments
were performed with the magnetic field rotated by an angle of 13◦ from the axis normal to
the conducting planes. This orientation was chosen because the SdH oscillations exhibit a
spin maximum (i.e. the cosine damping term in the LK formula due to spin splitting of the
Landau levels is 1) close to this angle, thereby rendering them most clearly observable [13].
The effects of MB are not sensitive to small angular displacements. The magnetoresistance
was measured in the longitudinal configuration by applying the current perpendicular to the
conducting planes. Four 20µm gold wires were attached to the sample using platinum
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paint, giving typical two contact resistances of∼10 �. Experiments were performed
using an alternating current of 25µA at 250 kHz; trial measurements with higher currents
demonstrated that this value caused negligible heating of the sample. The signal detection
system, pulsed field magnet and3He cryostat have been described in detail elsewhere [5];
in the context of this paper we merely note that the field pulse is asymmetric, possessing
lower values of dB/dt on the falling side than on the rising side. The signal-to-noise ratio
is therefore generally higher on the falling side of the magnetic field pulse and so in the
following sections we shall only show data obtained under these conditions.

Figure 2. (a) An example of a longitudinal magnetoresistance trace at 350 mK, with the magnetic
field at an angle of 13◦ with respect to the reciprocal-lattice vectora∗. (b) A Fourier transform
of a data trace recorded at the 0◦ orientation at 1 K. This yields the fundamental frequency of
the α orbit.

3. Results

3.1. General features

Figure 2(a) shows the magnetoresistance of theκ-(BEDT-TTF)2Cu(NCS)2 crystal at
350 mK; the sample surface normal is tilted by 13◦ with respect to the magnetic field.
Apart from the superconducting–normal-state transition, which occurs between 3 and
6 T (such a broadened transition appears to be an intrinsic feature of the material;
see [8] and references therein), the approximately temperature-independent background
magnetoresistance increases linearly with no apparent saturation, reaching∼6 � at 50 T. The
principal SdH oscillations corresponding to theα orbit emerge above the background noise
at ∼15 T, growing steadily in amplitude with increasing magnetic field. At higher magnetic
fields, the previously observed higher frequencies associated with theβ − α, β, β + α and
β +2α orbits due to MB and/or QI effects [9, 10] grow in amplitude, becoming comparable
in size to the slower oscillations at 50 T. A Fourier transform of the quantum oscillations
in the magnetoresistance (with the field tilted by 13◦ with respect to the sample surface
normal) is shown in figure 3 and the frequencies are tabulated in table 1. As expected for
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Figure 3. The solid line shows a Fourier transform of the raw data in figure 2(a) for the
region of 1/B between 0.02 and 0.03 T−1, after dividing by the background magnetoresistance.
The dashed line shows the equivalent Fourier transform for data recorded at 1.44 K. Of the
frequencies originating from magnetic breakdown, theα − β andα + β clearly dominate. The
inset shows the temperature dependence of theα frequency amplitude. A fit has been made to
the Lifshitz–Kosevich amplitude reduction factorRT ; the corresponding parameters are given
in table 1.

a Q2D system [21], the frequencies shown in table 1 are shifted up by a factor 1/ cos(13◦)
with respect to those of previous measurements [8–13] carried out with the magnetic field
perpendicular to the sample Q2D planes. The measurements performed at 0◦ (figure 2(b))
yielded frequencies in close agreement with the previous measurements and are also listed
in table 1.

Table 1. A list of the observed Shubnikov–de Haas and quantum interference frequencies with
their associated effective masses. The effective masses shown are for the tilt angle of 13◦.

Orbit F (T) at 13◦ F (T) at 0◦ m∗ (me)

α 626± 1 603± 5 3.5 ± 0.1
2α 1246± 4 — 6.4 ± 0.6
β − α 3399± 3 3310± 8 3.6 ± 0.3
β 4026± 9 — 7.1 ± 0.5
β + α 4652± 3 — 8.2 ± 0.4
β + 2α 5279± 8 — 8± 3
2β 8131± 10 — —

3.2. Effective-mass estimates

Effective masses were determined by fitting to the temperature reduction factorRT =
X/sinh[X] (X ∼ 14.69m∗T/B) from the conventional LK expression [15, 22]; an example
of such a fit is shown in the inset to figure 3. The effective masses derived in this way
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are shown in table 1; these are also shifted up by the small factor 1/cos(13◦) from the
values derived for the field perpendicular to the Q2D planes [21]. Although the data
used in deriving the masses include the oscillations up to the highest magnetic fields, the
mass value for theα orbit is in close agreement with previous estimates. This agreement,
together with the apparent good fit to the functionRT , suggests that the departures from
LK behaviour due to the quasi-two-dimensionality of the Fermi surface (i.e. due to the
chemical potential becoming pinned to very sharp Landau levels [6]) are not as significant
in κ-(BEDT-TTF)2Cu(NCS)2 as they are, for example, inα-phase BEDT-TTF salts such
as α-(BEDT-TTF)2MHg(NCS)4 (M = NH4, K) [2, 3, 6]. The most likely explanation
for this observation is that the Landau levels are broadened substantially, not only by
the finite quasiparticle lifetime, but also by the effects of magnetic breakdown; we shall
return to this point in the discussion in the following sections. However, the effective
mass derived for the second harmonic of theα orbit oscillations(6.4me, where me is
the free-electron mass) is slightly lower than twice the effective mass of the fundamental
frequency(3.5me); in the LK formalism, the second-harmonic mass is exactly twice that
of the fundamental. The unexpectedly low mass for the second harmonic has also been
noted in other works involving high magnetic fields, for instance [11–13]. Moreover, the
principal α frequency oscillations are distinctly peaked in appearance (see figure 4(a); the
maxima are narrower than the minima, so the oscillations do not appear sinusoidal). Both
of these observations suggest that a small departure from LK behaviour is occurring at high
magnetic fields [6]. Nevertheless, we stress that such effects are much more extreme in
α-(BEDT-TTF)2NH4Hg(NCS)4, where very strongly peaked SdH oscillations are observed
in the magnetoresistance due to near-insulating behaviour when the chemical potential is at
energies between very sharply defined Landau levels [3, 6].

3.3. Phase analysis and interference effects

According to the theory of Falicov and Stachowiak [16], MB introduces an additional
damping factorRB,j = pn1j qn2j exp[i n1jφp + i n2jφq ] for each of the frequenciesj
involved, whereP = p2 = exp[−B0/B] is the characteristic breakthrough probability and
q2 = 1−p2. The integersn1 andn2 denote the number of points of magnetic breakthrough
and Bragg reflection encountered along the semiclassical trajectory of the quasiparticle
orbit respectively. Since the phases of the ‘free electron’ and Bragg reflected waves are in
quadrature following a breakdown junction [14–16], we therefore haveφp + φq = ±π/2.
In contrast to the case for three-dimensional metals such as Hg in which additional arbitrary
contributions are added to the Onsager phase due to the curvature of the Fermi surface [15,
16], in a Q2D system the situation is much simpler, providing an opportunity for the phase
of the oscillations to be determined with more certainty.

In a two-dimensional metal with MB, the oscillatory contribution of each orbit to the
DOS is given, according to Falicov and Stachowiak [16], by

g̃j = 2
N

εF

C
m∗

m∗
β

pn1qn2(−1)l
′
j cos

[
ljφj [ε] + n1φp + n2φq

]
e−πlj /ωj τ . (1)

Here,N is the total carrier density,ωj is the characteristic cyclotron frequency andτ−1 is the
quasiparticle scattering rate.φj is the Onsager phase, which for a parabolic band depends
linearly onε. For the mainβ orbit, we have assumed that the energyε is zero at the bottom
of the band. At the Fermi energyεF , the phase of this orbit isφj = 2πFj/B, whereFj is
the characteristic dHvA frequency. The weight factorCj accounts for the number of times
that each orbit occurs in the Brillouin zone. In this modellj is the harmonic index whilst
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Figure 4. (a) A plot of the quantum oscillations versus 1/B (solid line), after dividing by the
background magnetoresistance, together with a fit made to the fundamental and second harmonic
of theα frequency (dotted line). (b) The higher-frequency components of the oscillations after the
fit made in figure 4(a) has been subtracted. (c) A plot of the interval of 1/B between oscillation
maxima versus 1/B. A sinusoidal fit through the points strongly suggests a correlation of this
‘frequency modulation’ effect with the waveform of theα orbit oscillations in figure 4(a).

l′j is the number of times that a wavepacket passes the same point on the Fermi surface
throughout its semiclassical trajectory. This distinction may appear trivial but is in fact
important; e.g. in the case of theα + β orbit, lj = 1 whereasl′j = 2.

In the absence of MB (i.e. whereq tends to zero), equation (1) leads to minima in
the DOS at integer values ofε/h̄ωc or F/B; in standard magnetotransport theory [23, 24]
these DOS minima result in maxima in the longitudinal magnetoresistance. This is indeed
observed in the case ofα-phase BEDT-TTF salts [6], where the magnetoresistance maxima
appear to correspond to the chemical potential being located in or close to the gap between
two adjacent Landau levels. In contrast, for theα orbit in κ-(BEDT-TTF)2Cu(NCS)2

(figure 4(a)) peaks in the magnetoresistance occur at valuesε/h̄ωc = r − (0.287± 0.001),
wherer is an integer. The origin of this additional phase shift is unclear, but the fact that
a phase shift of this kind is not seen in theα-phase BEDT-TTF salts suggests that it may
be a product of the MB effect [25].

Figure 4(b) shows the high-frequency component of the SdH oscillations for the field
interval between 30 and 50 T; the fundamental and second harmonic of theα orbit SdH
oscillations have been subtracted using the fit shown in figure 4(a) (this fit was made using
parameters derived from the Dingle analysis in the following section). The remaining fast
oscillations comprise a complicated beat of theβ − α, β, β + α and β + 2α frequencies.
A close inspection of the fast oscillations reveals that higher-frequency oscillations appear
to coincide with the peaks in the magnetoresistance (i.e. peaks in theα orbit oscillations),
whilst lower-frequency oscillations coincide with the magnetoresistance minima. Figure 4(c)
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shows the reciprocal of the interval of 1/B between the neighbouring maxima in figure 4(b)
plotted as a frequencyF = (1/Bmax 2− 1/Bmax 1)

−1 versus 1/B. A sinusoidal fit through
these points (figure 4(c)) suggests that the frequency modulation of the high-frequency
oscillations is closely correlated with the waveform of the low-frequency SdH oscillations
due to theα orbit (figure 4(a)). The mean oscillation frequency is that of theβ orbit to
within experimental errors, whilst the difference between the minimum and the maximum
frequencies is approximately 3.5Fα. We shall return to a discussion of this feature of the
magnetoresistance in section 5, which covers the theoretical modelling of QI effects.

Figure 5. Dingle plots of the observed frequencies. Where necessary, the points have been
connected by straight lines in order to show which points belong to the same orbit. The smooth
solid lines represent a fit to the first and second harmonics of theα orbit amplitude. The smooth
dashed and dotted lines correspond to the expected amplitudes of theβ andβ + α frequencies
respectively, according to the Falicov and Stachowiak model for magnetic breakdown [16].

3.4. Amplitude analysis

By convention, the field dependence of the amplitude of SdH oscillations is analysed by
plotting the function

ln[A] = ln

[(
1ρ

ρ0

)
sinhX

X

]
(2)

versus 1/B, where 1ρ and ρ0 are the oscillatory and background components of the
magnetoresistance respectively. This usually results in a linear graph (a so-called Dingle
plot) from which the Dingle temperatureTD can be determined [15, 26]. Owing
to the combined effects of MB and the slight departures from LK behaviour due to
the quasi-two-dimensionality of the Fermi surface, the corresponding Dingle plots for
κ-(BEDT-TTF)2Cu(NCS)2 in figure 5 show some degree of deviation from a straight line.
Of these two effects, MB is the most prominent [6], leading to a downward adjustment of
the Dingle plot by an amount1 ln[A] = ln

[
pn1j qn2j

]
, where bothp andq are dependent

on the magnetic field. A fit of the equation ln[A] = ln[A0,j ] − γj/B − ln
[
pn1j qn2j

]
to

the Dingle plot requires the adjustment of three parameters:γ = 2π2lkBTD,jm
∗
j /h̄e, B0

and the infinite-field intercept ln[A0]. Owing to close functional correlations between
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the latter two terms, a fit to the first harmonic alone cannot produce a satisfactory fit.
However, a simultaneous fit to both the first and second harmonics yields the parameters
TD,α = 0.64± 0.04 K, B0 = 41± 7 T and ln[A0,α] = −0.7 ± 0.1. The integrity of the fit
depends on the extent to which the LK formalism is able to approximate the behaviour of
the low-frequency oscillations in this material. The small deviation of the effective mass
m∗

2α = 6.4me from the expected value of 7me in this case suggests that the assumption of the
validity of the LK theory will only result in a small error. Nevertheless, the characteristic
breakdown field determined here is somewhat higher than those determined from the ‘low’-
field SdH measurements of Caulfieldet al [9] and the dHvA measurements of Meyeret al
[13]. The difference between these results and that in the present work is most likely an
indication of the difficulties in obtaining a reliable value of the breakdown field using only
low-field data; the fits in figure 5 show that in order to gain a reasonable estimate one needs
to observe MB at magnetic fields exceeding the breakdown field.

Using the parameters derived above for the quasiparticle scattering rate and characteristic
breakdown field, in figure 5 we have calculated the expected Dingle plots for theβ andβ+α

frequencies according to the standard MB theory of Falicov and Stachowiak [16]. Clearly,
the amplitude of theβ orbit is somewhat smaller than that expected from the theory, while
that of theβ + α frequency is somewhat enhanced. The overall slopes of the Dingle plots,
however, appear to be roughly consistent with the MB theory. The change of the relative
amplitudes of the standard breakdown frequencies is therefore likely to be associated with
the same effects (whether frequency mixing or QI) which are responsible for the generation
of the β − α frequency; we shall return to this point in section 5 of this paper.

4. Numerical simulations of magnetic breakdown excluding quantum interference

4.1. The model

In this section of the paper, we consider the influence of the quasi-two-dimensionality of
the Fermi surface on the frequency content of the oscillations. In high magnetic fields, the
Landau levels of Q2D metals become well separated in energy, leading to an oscillatory
chemical potential which can give rise to frequency-mixing effects [5, 6]. This problem
is not easily tractable by analytical means; the oscillatory chemical potential, Landau level
broadening and finite temperature plus the effects of MB must be included in calculations
of the thermodynamic function of state. A complete summation over all energy states
is required which is most conveniently evaluated using numerical calculations [6]. Since
the Fermi surface ofκ-(BEDT-TTF)2Cu(NCS)2, depicted in figure 1(a), corresponds very
closely to the one-dimensional network model proposed by Pippard (see [14, 15]), the
latter’s result forms a convenient point of departure; i.e.

cos[ω] = cos
[

1
2φβ

] + q2 cos
[

1
2φβ − φα

]∣∣2q cos
[

1
2φα

]∣∣ . (3)

Here,ω is the characteristic phase change of a quasiparticle on passing from a given point
on the Fermi surface to the equivalent point in the next Brillouin zone [14, 15], andφα and
φβ are the Onsager phases of theα andβ orbits respectively. Equation (3) is obtained by
accounting for all of the phases and amplitudes of the quasiparticles crossing the Brillouin
zone boundary (where the twoβ orbits of neighbouring zones intersect); see figure 7.4 of
[14], which results in a set of simultaneous (or coupled) equations. For simplicity we have
assumed the phase shift associated with magnetic breakthrough to be 90◦ (as did Pippard)
[14, 15]. Since cos[ω] lies only between−1 and+1 for realω, equation (3) can be used
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to generate the spectrum of permitted states, either in energy space or magnetic field space.
In order to account for the zero-point energy (which was ignored in Pippard’s original
calculations; see [14, 15]) and to make equation (3) compatible with LK theory [15, 22],
π has been added to the Onsager phases in equation (3). This results in the substitution of
the function ‘cos’ for the function ‘sin’ which was in Pippard’s original equation; see [14,
15]. Consequently, in the limit whereq tends to zero, equation (3) reproduces the spectrum
corresponding to the free-electron case with only theβ orbit present. In the opposite limit
asq tends to 1, a virtually continuous distribution of states is obtained, corresponding to the
Q1D open Fermi surface on top of which theα orbit Landau level states are superimposed.

It is convenient to approximate the main Fermi surface element (β orbit) in figure 1(a)
by a parabolic band; hence the Onsager phase

φβ = 2πm∗
βε

eh̄B
(4)

is linear with energy. In figure 1(a), the extremal area of this band intersects the zone
boundary at a distanceKC/2 from the centre of the zone, whereKC is the reciprocal-lattice
constant in this direction. If we assume this band to have a circular geometry (i.e. have
the same radii in thekb andkc lattice directions), we can calculate the area and hence the
phase of the resultantα pocket to be

φα = Re

[
2πm∗

βε

eh̄B

(
cos−1[z] − z

√
1 − z2

)]
(5)

where z =
√

h̄2K2
C/8εm∗

β . The effective mass of each orbit is given bym∗
j = ∂Aj/∂ε,

where the areaAj = eBφj/h̄ [14, 15]; for theα orbit this can be obtained by differentiation
of equation (5) to yieldm∗

α = (2m∗
β/π) cos−1[z]. At ε = εF this has the value 0.5m∗

β ; note
that the experimental masses (table 1) obey this relationship to within∼10%, illustrating
the close correspondence between the Fermi surface ofκ-(BEDT-TTF)2Cu(NCS)2 and
Pippard’s model. A further useful proportionality is that the effective mass of an orbit
is proportional to its perimeter. Under the constraint that the extremal area of theβ orbit
is equal to the total area of the Brillouin zone, we can define the Fermi energy asεF =
h̄2KBKC/2πm∗

β . By inserting the known crystallographic parametersKC ≈ 4.9× 109 m−1

andKB ≈ 7.5×109 m−1 [7, 10], we obtainFβ ∼ 3850 T andFα ∼ 660 T; these frequency
values are close to the experimentally determined frequencies [11–13].

Since the spectrum of allowed energy states can be calculated at equally spaced intervals
of ω (as was done by Pippard) [14, 15], we can use equation (3) to obtain the DOS in the
limit where τ−1 = 0. Consequently, each increment ofω by π corresponds to exactly one
Landau level; hence it can be shown thatg[ε, B] = Re|(dω/dε)NB/πFβ |. By inserting
the Onsager phases given by equations (4) and (5), the DOS can be calculated. In figure 6
we show an example of the DOS as a function of magnetic field for the case where the
chemical potential is constant (i.e. equal to the Fermi energyεF ). The distribution of the
states can be seen to be broadened, even without a finite quasiparticle scattering time. For
the case of a finite scattering rate, the DOS can be calculated using the result of Falicov
and Stachowiak [16] (i.e. equation (1)).

With the DOS having been obtained, the chemical potentialµ can be obtained in the
normal manner by inverting the integral

N =
∫

ε

g[ε, B]f [ε − µ] dε (6)
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Figure 6. A plot of the density of states at the Fermi energy (which is constant) as a function
of the magnetic field, calculated using equation (3). The points where the states are clustered
together more intensively (i.e. of greater degeneracy) correspond to the Landau levels of the
α orbit. The Landau levels corresponding to all of the magnetic breakdown frequencies are
contained within the general distribution of states.

numerically, wheref [µ − ε] is the Fermi–Dirac distribution function. The free energy is
given by

HF = µN − kT

∫
ε

g[ε, B] ln
[
1 + e(µ−ε)/kT

]
dε. (7)

4.2. Calculations of the magnetization

Figure 7(a) shows the computed free energy at temperatures of 0.4 and 1.4 K for the field
range between 30 and 50 T, using the DOS obtained from equations (3)–(7) (i.e. zero
scattering rate). At the lowest temperatures, the higher frequencies of the MB are
superimposed on the principalα frequency oscillations; closer inspection reveals that they
are cusp-shaped. Figure 7(b) shows the corresponding magnetization calculated via the
relation M = −∂HF /∂B. In many respects, the calculated magnetization waveform is
comparable to that experimentally observed by Meyeret al [13], in that the higher-frequency
oscillations have a larger amplitude on the rising slope of the magnetization than on the
falling slope. Fourier analysis of the calculated magnetization, shown in figure 7(c) [27],
reveals the presence of a significantβ − α frequency and even a further weak feature at
β−2α. Since the conventional MB theory described above does not allow such frequencies,
the β − α and β − 2α frequencies must therefore be solely a result of the effect of the
oscillations of the chemical potential on the thermodynamic functions. For comparison,
figure 7(d) shows the Fourier transform of the equivalent magnetization calculated using
the same numerical procedure but with the chemical potential held constant (i.e. analogous
to the standard LK approach). This latter result is in full agreement with the conventional
spectrum predicted by the network model; note that theβ − α and β − 2α frequencies
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Figure 7. (a) The computed free energyHF for the temperatures 0.4 K (thin line) and 1.4 K
(thick line). (b) The corresponding magnetization obtained by differentiating figure 7(a). (c) The
Fourier transform of the oscillations in figure 7(b) at 0.4 K (unshaded) and 1.4 K (shaded),
revealing a significant presence of theβ −α andβ −2α frequencies. (d) The equivalent Fourier
transform of the magnetization calculated in the same manner but with the chemical potential
held constant. (e) The magnetization calculated at 0.4 K for the scattering rate appropriate for
the measurements of this work. (f) The corresponding Fourier transform.

are absent.
It is now possible to see how theβ − α and β − 2α frequencies come to be present

in the magnetization whenµ is allowed to oscillate [13]. As stated above, the higher-
frequency MB oscillations occur predominantly on the rising slope of the magnetization
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(see figure 7(b) and figure 2(a) of [13]) due to the fact that the phases of theβ andβ + α

orbits interfere constructively at this point on the waveform. Furthermore, it is on the rising
slope of the magnetization where the chemical potential is ‘pinned’ to the Landau levels
associated with theα orbit. The pinning of the chemical potential has the effect of causing
the energy levels of theβ and β + α orbits to pass through the chemical potential more
slowly; i.e. as the chemical potential moves up with theα orbit Landau levels, features due
to theβ andβ +α orbits are shifted to lower frequencies by an amount close to theα orbit
frequency.

In many respects, the Fourier transform of figure 7(c) is very similar indeed to that
obtained by Machidaet al [19], even insofar that theβ + α frequency is vanishingly small
in both cases. Since the chemical potential was allowed to oscillate in the model in [19],
it seems likely that theβ − α and β − 2α frequencies in the results of those calculations
are an artefact of the oscillatory chemical potential rather than a general property of the
Hamiltonian.

By comparison of figure 7(c) with 7(d), it can be seen that the effects of the oscillatory
chemical potential become less important at higher temperatures; i.e. the shaded Fourier
transforms corresponding to 1.4 K are essentially the same. For this reason, the amplitude
of the β − α frequency drops off strongly with increasing temperature; exactly the same
is true when a finite quasiparticle scattering is introduced. In figure 7(e) we show
the calculated magnetization using the quasiparticle scattering rate obtained in section 3
(i.e. τ−1 = 0.53± 0.03× 1012 s−1), and in figure 7(f ) we show the corresponding Fourier
transform. It is clear from figure 7(f ) that theβ − α frequency has become vanishingly
small, and this probably explains why theβ − α frequency was only weakly present
in the measurements of Meyeret al on κ-(BEDT-TTF)2Cu(NCS)2 [13]. Owing to its
strong temperature dependence, theβ − α frequency in the magnetization should have an
apparent very heavy ‘effective mass’. However, in section 5 it will become apparent that the
temperature dependence of the amplitude of magnetoresistance oscillations of this frequency
will be rather different.

4.3. Calculations of the magnetoresistance

In section 4.2, it was demonstrated that allowing the chemical potential to vary with field
results in the presence of theβ−α frequency in the oscillations of thermodynamic quantities
such as the magnetization. However, none of the above calculations are able to give a
β − α frequency which is the dominant high-frequency oscillation. Whilst the calculations
are similar to experimentalmagnetizationdata, this feature is in marked contrast to the
experimentalmagnetoresistancedata, in which oscillations of theβ −α frequency are often
the most intense after those of theα orbit (see figure 3 of this work and also data shown
by Caulfieldet al [11]). In an attempt to understand this contrast between magnetization
and magnetoresistance experiments, we shall in the remainder of this section calculate the
magnetoresistance using the results of equations (3)–(7). It will be seen that this simple
theory is unable to reproduce the predominance of theβ −α frequency. Instead, the effects
of quantum interference must be introduced, and this will be carried out in section 5.

In contrast to calculations of the magnetization, which is a thermodynamic function of
state and therefore a direct consequence of the electronic density of states, the evaluation
of the magnetoresistance depends on many assumptions about complex transport scattering
processes and the exact geometry of the Fermi surface. For instance, the structure of the
magnetoresistance quantum oscillations will depend strongly on the direction of the current
with respect to the magnetic field. Usually in Q2D organic conductors the longitudinal
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magnetoresistance is measured, therefore requiring theories which deal specifically with
the longitudinal SdH effect. Most theories which treat this geometry deal with three-
dimensional systems [23]. The reason for this is simple; by definition, there is no
longitudinal conductivity in strictly 2D systems. The Q2D organic conductors represent
a class of materials of intermediate dimensionality, having some properties in common with
semiconductor superlattices [24]. Laikhtman and Menashe [24] have recently calculated
the oscillatory longitudinal magnetoresistance for semiconductor superlattices in the low-
magnetic-field limit. The fact that the oscillatory magnetoresistance is smaller than the
background magnetoresistance in figure 2 implies that the low-magnetic-field limit is
appropriate for our measurements. For this case, we can calculate the magnetoresistance
using the approximate formula [6, 23, 24]

σz = −σz,0

∫
ε

(
1 + λ

1g

ḡ

)
f ′[ε] dε. (8)

Here, f ′[ε] is the derivative with respect to energy of the Fermi–Dirac distribution and
1g and ḡ are the oscillatory and background components of the DOS respectively.λ is
a dimensionless constant of order unity which will be model dependent. In the case of a
constant chemical potential, the integration over energy in equation (8) simply results in the
familiar RT reduction factor in the LK formalism [15, 22]. In the present case, however,
the effects of the oscillatory chemical potential at high magnetic fields must be included;
the integration must be performed numerically, taking into account the dependence off ′[ε]
on µ [28].

Figure 8. (a) The longitudinal magnetoresistance calculated using the simple model defined by
equation (8). (b) The magnetoresistance calculated including the effects of quantum interference
using equation (16). (c) A plot of the interval in 1/B between the calculated resistance maxima
in figure 8(c). The correlation with the phase of theα oscillations in figure 8(c) is similar to
that observed experimentally.

Figure 8(a) shows the magnetoresistance forκ-(BEDT-TTF)2Cu(NCS)2 calculated
assuming the relationρz = 1/σz and using equation (1) for the DOS. A quasiparticle
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Figure 9. (a) A Fourier transform of the longitudinal magnetoresistance calculated in figure 8(a)
assuming the simple model without the effects of quantum interference. A striking feature
of this result is the dominance of theβ frequency over its nearest neighbours, which
contradicts experimental observations. (b) The corresponding Fourier transform of the calculated
longitudinal magnetoresistance in figure 8(b) with the inclusion of quantum interference effects
in accordance with the approximate model summarized by equation (16). The strong presence of
theβ −α andβ +α frequencies is strikingly similar to that experimentally observed in figure 3.

scattering rate(τ−1 = (0.53 ± 0.03) × 1012 s−1) and temperatures appropriate for the
measurements in this work have been used, and for simplicityλ has been assumed to be 1.
While the relative magnitude of the high-frequency oscillations is comparable to those
observed experimentally in figure 4(a), the frequency modulation effects do not appear to
be present in the calculations. Fourier transformation of the magnetoresistance, shown in
figure 9(a), reveals that theβ frequency dominates the high-frequency spectrum, and that
the amplitudes of theβ − α, β + α andβ + 2α frequencies are vanishingly small. Clearly,
the results of this calculation contrast greatly with the experimental results shown in figure 3.
Nevertheless, the Fourier transform in figure 9(a) is comparable to that calculated for the
magnetization in figure 7(f ), in which quasiparticle scattering has been included; within
the LK formalism, we should expect the magnetoresistance and magnetization spectra to be
comparable.

5. Quantum interference effects

In the final part of section 4 it was shown that the standard longitudinal magnetoresistance
models fail to produce a significantβ−α frequency, let alone one which dominates the high-
frequency spectrum. This implies that a more thorough calculation of the magnetoresistance
requires the summation over all possible quasiparticle paths. With the inclusion of MB into
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the problem, the number of possible paths becomes infinitely greater. The possibility of a
quasiparticle having two or more possible paths between two points in real space leads to
the occurrence of Stark QI.

Figure 10. (a) The solid line illustrates the semiclassical motion of a quasiparticle along two of
the possible paths between A and B, which leads to theβ − α interference frequency. Owing
to the quasi-two-dimensionality of the Fermi surface, there is often a longitudinal component of
the velocity, leading to the trajectories shown by dashed lines. The difference in lengths of the
paths leads to a relative displacement3 in real space between the interfering quasiparticles. (b)
A schematic diagram of the possible starting positions A and recombination points B, C, D and
E which lead to the quantum interference effects.

In this section we begin our treatment of the Stark QI effect by considering the approach
of Morrison and Stark [18]. The full calculation of the magnetoconductivity involves solving
the linearized Boltzmann equation

σ = e2
∫

d3k

4π3
(−f ′)vkΛk (9)

where the quantityΛk is thek-averaged mean free displacement obtained by summing over
all possible paths through the network

Λk =
∫ t0

−∞
vke(t−t0)/τt dt. (10)

The integration for eachk-vector is made over the evolutionary timet as the quasiparticle
moves throughout the coupled network. For the purpose of calculating the transverse
component of the conductivity, as was considered by Morrison and Stark (with the current
orthogonal to the applied magnetic field), the transverse mean free displacement of a
quasiparticle can be related to itsk-space equivalent pathKk, by the identity

Λk⊥ = h̄

eB
B̂ × Kk. (11)

While this is true for the transverse component of the magnetoresistance, the longitudinal
component of the mean free displacement is different for the two branches of the interference
orbit (see figure 10(a)). In a three-dimensional system, this will prevent QI from occurring



Quantum interference inκ-(BEDT-TTF)2Cu(NCS)2 5431

in the longitudinal direction. However, owing to the small component of the group velocity
in the longitudinal direction in Q2D systems such asκ-(BEDT-TTF)2Cu(NCS)2, the path
travelled (for example between points A and B in figure 10(b)) in that direction will be
shorter than the longitudinal de Broglie wavelength [29]. This enables QI effects to be
observed in the longitudinal magnetoresistance ofκ-(BEDT-TTF)2Cu(NCS)2.

Table 2. The principal ‘unique’ orbits resulting from the effect of quantum interference.|G′|
and |G′′| have been written out in full, so as to indicate the paths taken.Cj takes into account
the number of possible occurrences of the equivalent orbit within the Brillouin zone, divided by
the four possible starting positions(A, A′, A′′ and A′′′); the actual route and the order in which
the junctions of magnetic breakthrough or Bragg reflection are encountered may be different.
The quantityλ̄j in this table is the approximate relative average component of the path length
travelled in the longitudinal direction; it has been renormalized to the distance covered on one
revolution of theβ orbit. Possibilities where the two branches of the quasiparticle orbit travel
together along the same piece of Fermi surface or pass simultaneously through the same junction
(in the same direction) do not count, since these possibilities are already comprised within other
orbits.

Route |G′| |G′′| Orbit Cj m′
j m∗

j λ̄j (relative)

A to B pp qp2q β − α 2 mβ mβ − mα 0.5
A to B pp qpq2pq β 4 mβ + mα mβ 0.75
A to B pp qpq4pq β + α 6 mβ + 2mα mβ + mα 1
A to B pp qpq6pq β + 2α 8 mβ + 3mα mβ + 2mα 1.25
A to B pq2p qp2q β − 2α 2 mβ + mα mβ − 2mα 0.75
A to B pq2p qpq2pq β − α 4 mβ + 2mα mβ − mα 1
· · · · · · · · · · · · · · · · · · · · · · · ·
A to D pq p3q β 1 mβ mβ 0.5
A to D pq pq2p2q β + α 2 mβ + mα mβ + mα 0.75
A to D pq pq4p2q β + 2α 3 mβ + 2mα mβ + 2mα 1
· · · · · · · · · · · · · · · · · · · · · · · ·
A to E q −pqp α 1/2 mα mα 0.25
A to E q −pq3p 2α 1/2 2mα 2mα 0.5
· · · · · · · · · · · · · · · · · · · · · · · ·
A′′ to C q −p3qp3 2β − α 1/2 2mβ–mα 2mβ–mα 0.75
· · · · · · · · · · · · · · · · · · · · · · · ·

For the purpose of our calculations, it is necessary to resolve the longitudinal component
of the mean free displacement into two components; hence

3kz
= 3̄kz

+ 3̃kz
. (12)

Since the action of MB does not affect the longitudinal motion of the quasiparticle, the
average mean free displacement will always be given by the classical approximation:
3̄kz

= vkz
τt,z (in general, the longitudinal component of the velocityvkz

depends onkz).
The oscillatory component̃3kz

includes only the interference terms. A full calculation
of the magnetoresistance in any direction poses an intractable problem, even for the most
elementary Fermi surface. However, we can approximately take into account the effects of
QI using the following method; apart from those which are scattered with relatively short
path lengths, all quasiparticles on the quadrant a of the Fermi surface (in figure 10(b))
inevitably pass the point A. From there on the wave splits, to be recombined later at
the points B, C, D and E. By considering all possible trajectories between A and the
recombination points, we can identify the principal paths which will lead to ‘interference
orbits’ (see table 2 for a list). Each pair of interfering paths contributes a characteristic



5432 N Harrison et al

Fourier component tõ3kz
. For each branch of the interference orbit, we can define the

wave amplitude propagator

G = pn1qn2eiφ−t/2τ (13)

where φ is the evolutionary phase of the quasiparticle (see [14] and [15]). The total
probability amplitude upon reaching the point B on the Fermi surface will therefore be
given by P = |G′ + G′′|2, whereG′ and G′′ are the wave amplitudes corresponding to
the short and long paths respectively. Having reached B (for example), the exact point at
which the quasiparticle is scattered is not important. In reality, the wave may continue to
subdivide as it continues its motion through further magnetic breakthrough nodes. By this
time, however, the wave will be considerably attenuated, so as a first approximation we can
ignore these second-order QI effects.

The non-oscillatory component̄P contributes only to3̄kz
, which in our model is

independent of the magnetic field. A small amount of algebra leads to the following
expression for the oscillatory contribution to the probability amplitude:

P̃j = 2pn1j qn2j cos[φj ]e−π/ω′
j τ . (14)

Here, n1 andn2 denote the total number of points of magnetic breakthrough and Bragg
reflection for both paths, whileφj is the relative phase difference between the orbits, which
appears as a virtual ‘Onsager phase’. The effect of quasiparticle scattering leads to dephasing
of the interference, so by analogy with the LK formalism the effective cyclotron mass
m′

j = eB/ω′
j is proportional to the total perimeter of the interference orbit ink-space.

To calculate the total oscillatory contribution to the mean free displacement, we need
to consider not only the recombination points B, C, D and E in figure 10(b), but also the
other possible starting points A′, A′′ and A′′′. Of these A′′ is symmetrically equivalent to
A, and A′ and A′′′ are mutually equivalent. Finally,

3̃kz
≈

∑
j

Cj λ̄j P̃j (15)

whereCj is a weight which takes into account the number of occurrences of equivalent
‘orbits’ within the Brillouin zone, divided by the number of starting points. We can
approximateλ̄j ∼ vz/2ωj as the average of the lengths of the two interfering paths in the
longitudinal direction. In reality, there will be some minor modification of equation (15)
owing to the fact that a small percentage of the quasiparticles originating from quadrant
a will be scattered before reaching point A in figure 10(b). This will lead to a small
amplitude reduction factor. Intuitively, one might expect this effect to be compensated by
a small number of non-scattered, non-interfering quasiparticles arriving from the quadrants
b and c.

Even with this rather approximate treatment of the quantum interference effects in
κ-(BEDT-TTF)2Cu(NCS)2, a full calculation of the magnetoconductivity using equation (9)
represents a formidable problem. However, since the ratio3̃kz

/3̄kz
is independent ofkz

within the model, the effects of QI can be included approximately as a correction factor
KQI = (1 + 3̃kz

/3̄kz
). Thus equation (8) can be rewritten as

σz = −σz,0

∫
ε

KQI

(
1 + λ

1g

ḡ

)
f ′[ε] dε. (16)

The integration overε implies that each interference frequency will have an associated
thermal damping factor. The corresponding effective massm∗

j which enters into the thermal
damping factor is proportional to the difference in length between the two interfering
paths in k-space, and is therefore different from the effective mass which enters into
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the quasiparticle scattering term. In [18], the two interfering paths in metallic Mg have
virtually equal lengths, leading to an effective mass of zero. For theβ − α frequency in
κ-(BEDT-TTF)2Cu(NCS), the path lengths are not equal and the corresponding effective
mass ism∗

β−α = m∗
β −m∗

α ∼ 3.6me; this result agrees reasonably well with the experimental
results.

In figure 8(b) we have calculated the magnetoresistance by means of equation (16),
including all of the frequencies and parameters listed in table 2. The corresponding
Fourier transform in figure 9(b) now shows many similarities with the experimental Fourier
transform of figure 3. As observed experimentally, at higher temperatures theβ − α

frequency dominates the MB spectrum owing to its lower effective mass. At lower
temperatures, theβ + α interference frequency becomes increasingly dominant, perhaps
explaining why the amplitude of theβ + α frequency in figure 5 was larger than expected.
Owing to the fact that theβ SdH frequency and theβ QI frequency are in anti-phase,
the overall amplitude of this frequency is reduced, accounting for the suppression of the
β frequency in the experimental results. Whilst the SdH frequency contains an additional
phase factor ofπ due to the zero-point energy, such a phase factor is not expected to occur
in QI effects [18].

In section 3 of this paper, it was noted that the higher-frequency oscillations (see
figures 4(b) and 4(c)) exhibit a frequency modulation effect. The pattern of this interference
effect is characteristic of the relative phase and amplitude relationships between the various
interfering frequencies. In figure 8(b), the same procedure has been applied to the calculated
trace, i.e. the reciprocal of the interval of 1/B between adjacent peaks has been plotted
against 1/B. Whilst it is evident from figure 8(c) that there exists some degree of correlation
of the frequencyF with the waveform in figure 8(b), the functional form is not as smooth
as the experimental result in figure 4(c).

SdH oscillations with theβ − 2α frequency were not directly observed in the current
experiment, but have been observed experimentally by Kartsovniket al [30]. For
large oscillatory amplitudes (i.e. high-quality samples with low scattering), the product
KQI (1 + λg̃/ḡ) in equation (16) can also lead to further frequencies such asβ − 2α due to
frequency-mixing effects. According to the values listed in table 1, the effective mass of
this orbit should bem∗

β−2α = 0.1 ± 0.5me (i.e. approximately zero).

6. Summary

We have investigated the effects of MB and QI at high magnetic fields in the charge-
transfer saltκ-(BEDT-TTF)2Cu(NCS)2. By performing experiments above the characteristic
breakdown field, the structure of quantum oscillations becomes clearly resolved, enabling
comparisons with theoretical models. One of the major objectives has been to find the real
origin of the β − α frequency, which is normally forbidden by standard theories for MB.
Numerical calculations have shown that the oscillations of the chemical potential at high
magnetic fields can explain the presence of a significantβ−α frequency in the magnetization
spectrum. However, this effect alone is not sufficient to explain the presence of aβ − α

frequency in the longitudinal magnetoresistance which dominates higher-frequency spectral
content. Rather, the oscillations of the chemical potential lead to a suppression of all other
frequencies in the magnetoresistance spectrum in favour of theβ frequency.

The presence of a strongβ −α frequency in the longitudinal magnetotransport spectrum
can therefore only be explained by the Stark QI effect. Since the established theories
deal only with QI in the transverse magnetoresistance, some adaptation of the theory is
required in order to calculate its effect on the longitudinal magnetoresistance. The slow
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longitudinal component of the quasiparticle velocity in the longitudinal direction enables the
phase coherence in this direction between the departing wave amplitudes to be maintained.
Calculations of the magnetoresistance including the effects of QI can thus be performed,
and can successfully reproduce many aspects of the experimental data—in particular, the
relative amplitudes of the various interference frequencies.
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